Abstracting Failures Away
From Stateful Dataflow Systems

Aleksey Veresov

Supervised by Philipp Haller and Jonas Spenger

Overview Introduction > Model > Definitions > Proof > Conclusion

- The first small-step operational semantics of Asynchronous Barrier Snapshotting
- A novel and general definition of failure transparency

- A proof that ABS provides failure transparency

- A proof technique is devised and presented

- The model, the definitions and the theorems are mechanized in Coq*

Related Work

Scalable and Reliable Data Stream Processing, Paris Carbone, PhD dissertation, 2018
Durable functions: semantics for stateful serverless, Sebastian Burckhardt et al, 2021
Fundamentals of Fault-Tolerant Distributed Computing in Asynchronous Environments, Felix C. Gartner, 1999

2/26

https://github.com/aversey/abscoq

Failures in Distributed Systems

Failures are hard to handle in Distributed Systems

- Google’s apps crashed for around an hour in 2020%

- Facebook services were down for ~6 hours in 2021** @

- Cloudflare had outage for ~6 hours in 2020*** due to a Byzantine failure
focus on crash failures

Formal Methods are the preferred solution \x,xj

- Amazon applies them to AWS****
- Microsoft uses them on Azure****
- Other leading companies show interest in them

3/26

https://blog.cloudflare.com/a-byzantine-failure-in-the-real-world
https://en.wikipedia.org/wiki/2021_Facebook_outage
https://github.com/ligurio/practical-fm
https://www.nytimes.com/2020/12/14/business/google-down-worldwide.html

Failures in Stateful Dataflow Systems

P
emerging systems
S Portals™, Styx**, etc.
Apache Flink Google Dataflow Azure Event Hubs

No need to handle failures manually
= widespread use, e.g., in Uber, ByteDance

Flink serves billions of events per second
No general formal definition applicable to SOS of

Failure Transparency

No previous work is applicable to any of the mentioned systems
although the systems are claimed to provide it!

4/26

https://doi.org/10.1145/3563835.3567664
https://doi.org/10.1145/3563835.3567664
https://doi.org/10.1145/3563835.3567664
https://github.com/delftdata/styx

Rollback Recovery

Asynchronous Barrier Snapshotting

~

O,
P, T
<
PR <
O™

1. Process up to a barrier

S
— T) — I
. 4

/3. Upload snapshot &

propagate barrier

‘~\\\\\ _

/

2. Barriers are aligned

minue processing

6/26

Small-Step Operational Semantics

acz beZ c=a+b

ADD
add(a,b) — ¢
a—a b— b
ADDL ADDR
add(a, b) — add(a’, b) add(a, b) — add(a, b")

AP add(3,add(3,4)) 2225 add(3,7) 225 10
add(add(1,2), add(3, 4)){
ADDR ADDL ADD
add(add(1,2),7) — add(3,7) — 10

7/26

Stateful Dataflow Model

Stateful Dataflow Model

small-step operational semantics of ABS-based systems

3 rules describe a failure-free system
+ 2rules are related to failures
+ 2rules are auxiliary

9/26

Stateful Dataflow Model, S-Step

'4

/

X / / !
I, - X, — X X(N,, M)=(N,, M
p p P (p) (D) S-STEP

(I, ©, N, M, D) (IL X[p— 3], N[p— N,

'], M', D)

10/26

Stateful Dataflow Model, I-Event

~ ~
~ ~

O O
R o XX —Zezm -0 DAGDACD TS

P ~Aad

O o=

fv,w) =7,
J{—sjw, EV(w))]

I-EVENT

TK(f, S, 0) IF (a, (e, > (a, (e, v"))

11/26

Stateful Dataflow Model, I-Border

(" < -
0 ol —memems| U, O Eem—
0 — e

~
_— __—

N[—S. n I-BORDER
TK(f,[Si]F, 0) I (a, (e, v)) [~ Si (e, BD)];"

! ,(e+1,v))

12/26

Stateful Dataflow Model, F-Fail

F-FAa1L

TK(f,S,0) I+ (a, ov) — (a,f1)

13/26

Stateful Dataflow Model, F-Recover

> N IR o X @ 7k
UT\ i) R

4

(a,fl) € X

(IT, X, N, M, My) = les((II, 3, N, M, My))

F-RECOVER

Failure Transparency Definition

Failure Transparency, on example

receive process receive ‘ recover to recetive receive receive process
av =0 E<1Z av = 1|BDs[qv = 1] E<3zrav = 2] falzrav = f1)a: (Qlav = 1|Reset (qu =0 E<3zrav =3 E<5zrav = 4|BDsfaqv =4
a = agp . CL:a,()J 'La:ah 'La:ah VLCL ialJ 'la:al 'La:al 'La:al 'La:al g a = ag

]: receive Pprocess]: receive receive receive process I

av =0 E<1> av = 1 BDE av = 1 Reset av =0 E<32 av = 3 E<5Z av = 4 BDf av = 4
> : - 'a:agl

L(I:Cbl L(I:Cbl La:al

\ 4

a = agp a = agp a = ay
\ J J \ J

Execution in R

A sequence of configurations [Cl-]? such that Vi <n.RFC,_; = C..

16/26

Observational Explanation C 0=9"¢

’

Relates two executions C and C’ according to some observability functions O and O

Intuitively: all observations reachable in original can be reached in the explanation

Vm < n. Im’ <n'. O(C,,) = O'(C!)

17/26

Observational Explainability R 020 R

Relates two systems R and R’ according to observabilities O and O’ and translator T

Intuitively: for each execution of a translation, its source should observationally explain it

V' € dom(T). Ve. Te = VC e EEF. 3C" ¢]Eftl. C =9

18/26

Failure Transparency

Observational explainability of a system by its failure-free part

Intuitively: for each valid (= in K) program,
no execution with failures (R) produces an observation,
which can not be achieved in its execution without failures (R \ F).

R O {(c,c) | CEK}\O(R\F)

It is suitable for a wide range of models in small-step operational semantics!

19/26

Composability of Observational Explainability

}/\{ O”Oé ToT O/R/

D

down to the real code

20/26

Failure Transparency of Stateful Dataflow

Causality

22/26

Causal Consistency

23/26

Proving Failure Transparency
pl recover
P2

P3

commit cominit comimit

Given: Original execution

recover e <e<e, recover

p3 :
commit commit commit commit
1. Separated generation 2. Reordered generation
p1 >
Y2
b3 for—>
commit commit commit 24/26

Construct: Failure-free observational explanation

Conclusion

Summary

- Failure Transparency is defined so that it is widely applicable
- The definition enables easier proofs via history manipulation
- The first operational semantics of Asynchronous Barrier Snapshotting is provided

- Asynchronous Barrier Snapshotting provides Failure Transparency

Future Work

- Mechanize the proofs
- Provide lower- and higher-level models of Stateful Dataflow Systems

- Explore end-to-end Failure Transparency of heterogeneous systems 26 /2

