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Related Work

Introduction → Model → Definitions → Proof → Conclusion

- The first small-step operational semantics of Asynchronous Barrier Snapshotting

- A novel and general definition of failure transparency

- A proof that ABS provides failure transparency

- A proof technique is devised and presented

- The model, the definitions and the theorems are mechanized in Coq*

  * github.com/aversey/abscoq

Scalable and Reliable Data Stream Processing, Paris Carbone, PhD dissertation, 2018 
Durable functions: semantics for stateful serverless, Sebastian Burckhardt et al, 2021 
Fundamentals of Fault-Tolerant Distributed Computing in Asynchronous Environments, Felix C. Gärtner, 1999
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Failures in Distributed Systems

Failures are hard to handle in Distributed Systems

3
** en.wikipedia.org/wiki/2021_Facebook_outage **** github.com/ligurio/practical-fm

Formal Methods are the preferred solution

- Google’s apps crashed for around an hour in 2020*
- Facebook services were down for ~6 hours in 2021**
- Cloudflare had outage for ~6 hours in 2020*** due to a Byzantine failure

- Amazon applies them to AWS**** 
- Microsoft uses them on Azure****
- Other leading companies show interest in them

  * nytimes.com/2020/12/14/business/google-down-worldwide.html

focus on crash failures

😈

😵

https://blog.cloudflare.com/a-byzantine-failure-in-the-real-world
https://en.wikipedia.org/wiki/2021_Facebook_outage
https://github.com/ligurio/practical-fm
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Failures in
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emerging systems 
Portals*, Styx**, etc.

  * Spenger et al. Portals: An Extension of Dataflow Streaming for Stateful Serverless. Onward! 2022.

Stateful Dataflow Systems

** github.com/delftdata/styx

No need to handle failures manually
⇒ widespread use, e.g., in Uber, ByteDance

     Flink serves billions of events per second
No general formal definition applicable to SOS of 

Failure Transparency
No previous work is applicable to any of the mentioned systems

although the systems are claimed to provide it!

Google Dataflow Azure Event HubsApache Flink

Color + black

https://doi.org/10.1145/3563835.3567664
https://doi.org/10.1145/3563835.3567664
https://doi.org/10.1145/3563835.3567664
https://github.com/delftdata/styx
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1. Process up to a barrier

Asynchronous Barrier Snapshotting
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2. Barriers are aligned

3. Upload snapshot & 
propagate barrier

4. Continue processing
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Small-Step Operational Semantics
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14 Background

of evaluation to arguments of add. Evaluation contexts [Felleisen and Friedman
1987; Felleisen, Friedman, et al. 1987] are often used to simplify description of
such cases; however, the particular stateful dataflow semantics introduced in this
thesis can not be simplified this way, and therefore the technique is not used.

For example of an evaluation, let’s consider program add(1,2). The only rule
applicable to it is A!!, which results in a conclusion add(1, 2)→ 3. As there are
no further rules applicable to 3, the execution of the program is finished after this
single step, and integer 3 is the result.

For a more complex program add(add(1, 2),add(3, 4)), the result 10 is reached
after three steps, however there are two ways to reach it: as a first rule to apply
we can choose either A!!L or A!!R, resulting in two di!erent derivations:

add(add(1, 2),add(3, 4))
A!!L↑↑↑→ add(3,add(3, 4))

A!!R↑↑↑→ add(3,7)
A!!↑↑→ 10

add(add(1, 2),add(3, 4))
A!!R↑↑↑→ add(add(1, 2), 7)

A!!L↑↑↑→ add(3,7)
A!!↑↑→ 10

This nondeterminism does not have an e!ect on the results achieved by ap-
plying this sample semantics, however in more complex cases it can be crucial.
Particularly, the ability to easily formulate nondeterministic systems in small-step
operational semantics can be used to model asynchronicity of communication in
distributed systems, which is essential for accurately capturing the behavior of the
Asynchronous Barrier Snapshotting protocol.
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to restore their state to the one saved immediately after processing this epoch. To
calculate the greatest common epoch, the coordinator organizes a two-phase com-
mit: in the first phase, it collects “precommit” messages about epoch processing
from all processors, and then, in the second phase, it sends a “commit” message
back, which is especially important for sinks. Therefore, a committed message is
processed by all processors and included in the global snapshot. Any event which
is not committed can be aborted, and therefore should not be sent to the user by
the sinks, since the goal is to provide a failure-transparent view of the system. A
result of an epoch processing cannot be aborted after it was “committed” and thus
it is safe to be output by the sinks.

2.3 Small-Step Operational Semantics
Small-step operational semantics [McCarthy 1960; Plotkin 1981] is an approach
to capture meaning of a program, coming from programming languages theory
and commonly used in formal verification. It consists of providing a set of rules,
with each of them describing a single type of step of a program execution. The
reasoning about the program is then made in terms of all the executions of it which
are possible according to these rules.

For example, we can formalize a simple calculator, capable of summing integers
by performing the add function on pairs of them. We do so by providing the A!!,
A!!L, and A!!R rules:

A!!
a → ! b → ! c = a+ b

add(a, b)↑ c

A!!L
a↑ a

↓

add(a, b)↑ add(a↓, b)
A!!R

b↑ b
↓

add(a, b)↑ add(a, b
↓)

Each of the rules is marked by its label on the left; everything above the line to
the right from the label is the premises, all of which have to be satisfied in order
to apply the rule; and the statement below the line is its conclusion. In case of
small-step operational semantics, the conclusion is usually a statement of the form
a↑ b, where a is the current state of the program, and b is the state after taking
an execution step captured by the rule.

To note is that here we had to introduce two similar rules for propagation
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Stateful Dataflow Model

small-step operational semantics of ABS-based systems

3 rules describe a failure-free system
+ 2 rules are related to failures
+ 2 rules are auxiliary

9
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Stateful Dataflow Model, S-Step

10

15:10 Failure Transparency in Stateful Dataflow Systems

the configuration transitions to the new configuration È �, �
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In summary, the result of the streaming step is an update of the local state of the processor
according to the local step, and an update of the sequence numbers and messages according
to the actions X. To simplify the analysis of streaming steps, auxiliary information about
the processor ID, its sequence numbers, and the actions of the step is placed on the arrow
of the execution step. This information can be omitted when it is not needed by applying
abstraction steps S-AbsX and S-AbsP.
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The streaming rule can be applied if there exists a derivation of the form �p � �p

X≠æ �Õ
p

for a processor �p. These are called local steps, since they have access only to the local
data of a processor, i.e., its definition, state and locally accessible messages. These rules
describe the local step of a processor, in which the processor may produce and consume
messages/actions X, and update its local state to �Õ

p
. The produced actions X modify the

sequence numbers of the processor Np and the messages in the system after application. This
is computed by the action application function X(Np, M) and results in the new sequence
numbers N

Õ
p

and messages M
Õ for the next configuration as defined below.

Action Application. The action application rule defines how actions modify the sequence
numbers and messages. A production action + s d increases the sequence number of the
stream s for the producer, and adds the message to the sequence of messages. Each stream
has at most one producer; thus, we do not need to specify the producer in the action or
message. A consumption action ≠ s d increases the sequence number of the stream s for
the consumer, but does not remove it from the sequence of messages, as there may be
other consumers waiting to consume the message. To note is that the consumption action
application is only defined if the message is present in the sequence of messages. Due to this,
local steps may only be applied in the context of the S-Step rule if the consumed message
is present in the sequence of messages. The remaining cases of the definition are for the
recursive application of actions.

I Definition 4.1 (Action Application).

(+ s d)(Np, M) = (Np

#
s ‘æ Np(s) + 1

$
, M fi

)
Np(s) s d

*
)

(≠ s d)(Np, M) = (Np

#
s ‘æ Np(s) + 1

$
, M) if Np(s) s d œ M , undefined otherwise

(
#
x

$
: X)(Np, M) = X(x(Np, M))

Á(Np, M) = (Np, M)

According to the definition, it is not always possible to apply an action. This may be the
case if, for example, a message for some sequence number is not yet available on its stream.
This enables indirectly “passing” messages to the local step rules. Whereas the local step
rule is defined for all possible steps for all messages that it may consume, cases in which the
message consumption is not applicable by the action application definition are ruled out by
the streaming global step rule. This leaves only messages which are applicable to be applied
to the steps, thus passing the message to the rule.
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Stateful Dataflow Model, I-Event
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15:12 Failure Transparency in Stateful Dataflow Systems

(a) Block streams with borders (b) Borders are aligned

(c) Upload snapshot and propagate border (d) Continue processing

Figure 8 Epoch border alignment protocol (figure adapted from [10]).

4.2.1 Derivation Rules
The semantics of the model consists of seven rules. Three of the rules, I-Event, I-Border,
and F-Fail, are local rules which enable deriving a local step of the form fi � ‡

X≠æ ‡
Õ.

Whereas the I-Event and I-Border rules model the processing of the system, the F-Fail
rule models nondeterministic crash-failures of a processing task within the system. These
rules, together with the streaming rule S-Step and its abstraction rules S-AbsX and S-AbsP,
are used for deriving global steps. The fourth rule, F-Recover, is a global rule used for
recovering the state of all processors after a failure.

Event Rule. The first rule, I-Event, models tasks processing events:

f(v,ww) = v
Õ
,
#
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Í Í]n
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[+ o È e, EVÈ W
Õ
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Í Í]n
i≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ È a, È e, v

Õ Í Í
I-Event

The rule can perform a local step for a task TKÈ f, [Si]|S|
i

, o Í, if the current state of the
task is a normal state È e, v Í, and the task can consume an event EVÈ w Í from one of its
inputs Sj . Applying a task’s function f to its current state v and the consumed event w

results in the task’s next state v
Õ and a sequence of output events

#
W

Õ
i

$n

i
. The rule updates

the state of the task to the new state È e, v
Õ Í and produces the output events [EVÈ W

Õ
i

Í]n
i

on
the output stream o. The local step produces the actions which are the concatenation of the
consumed and produced events. For example, [≠ Sj È e, EVÈ w Í Í] : [+ o È e, EVÈ w

Õ Í Í] is the
action of consuming the event EVÈ w Í with epoch number e from the input stream Sj and
producing the event EVÈ w

Õ Í with epoch number e on the output stream o.

Border Rule. Whereas the event rule consumes a single event from a stream, the border
rule (I-Border) consumes one border event BD from every incoming stream:

TKÈ f, [Si]ni , o Í � È a, È e, v Í Í
[≠ Si È e, BD Í]n

i
[≠ Si È e, BD Í]n

i
:[+ o È e, BD Í][+ o È e, BD Í]
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#
e ‘æ v

$
a
#
e ‘æ v

$
, È e + 1e + 1, v Í Í

I-Border

This consumption is enabled for a task if the next event to be consumed on every one of
its incoming streams is a border event. In other words, the event rule consumes events up
until all streams are aligned by the border events, at which point the border rule consumes
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the border events from all its incoming streams. The rule is a local step which, in addition
to consuming border events from all incoming streams and producing a border event on its
outgoing stream, stores the current state v for epoch e to the snapshot storage a (by setting
the new snapshot archive to a[e ‘æ v]), as well as incrementing the current epoch number.

Epochs are a key concept of Asynchronous Barrier Snapshotting. Each epoch is a sequence
of data-bearing events, ending with an epoch border, and are used to define the boundaries
of state snapshots. After regular processing for which some streams are blocked by border
events (Figure 8a), the rule aligns the streams by the borders (Figure 8b), takes a copy
of the current state of the processor storing it to the snapshot archive (Figure 8c), and
propagates the epoch border message downstream and increments the epoch number, ready
to process events from the next epoch (Figure 8d). The e�ect of this is that epochs of events
are separated by the border events throughout the whole processing graph.

Failure Rule. Failures are introduced nondeterministically by the F-Fail rule:

TKÈ f, S, o Í � È a, ‡V Í æ È a, flfl Í
F-Fail

The failure rule sets the task’s state to failed Èa, flÍ, thus losing the task’s volatile state.
Once a task is failed, it is no longer able to apply the steps I-Event and I-Border, and
will remain idle until the F-Recover rule has been applied.

Failure Recovery Rule. The last rule, F-Recover, is a global rule which recovers the state
of all failed tasks:

È a, flfl Í œ �
È �, �, N, M, M0 Í ∆ lcslcs(È �, �, N, M, M0 Í)

F-Recover

The rule may be triggered nondeterministically if there exists a task in a failed state, and
will reset the state of the system to the latest common snapshot. The full details of how
the latest common snapshot (lcs) is computed is discussed further below, as it depends on
additional definitions.

The latest common snapshot is constructed by: (1) calculating the greatest common
epoch for which a snapshot has been taken by all processors in the system; (2) restoring
the state of all processors to their local snapshots at the greatest common epoch; and (3)
restoring sequence numbers and messages to undo any messages that were produced or
consumed for epochs greater than the greatest common epoch. The greatest common epoch
is calculated by finding the minimum (common) of the maximum (greatest) epoch numbers
of the local snapshots of all the processors.

I Definition 4.2 (Greatest Common Epoch Number). The greatest common epoch number of
a configuration c = È �, �, N, M, D Í is:

gce(c) = min
)

max(dom(a))
-- �p = È a, ‡V Í

*

The persistent output messages of the system consist of all messages produced up to and
including the greatest common epoch. These messages can be identified by comparing their
epoch number e to the greatest common epoch number e Æ gce(c). The recovery purges any
messages which are not part of this set, bar the initial input messages M0, thereby making
these output messages (identified by out) persistent.
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the state of all processors to their local snapshots at the greatest common epoch; and (3)
restoring sequence numbers and messages to undo any messages that were produced or
consumed for epochs greater than the greatest common epoch. The greatest common epoch
is calculated by finding the minimum (common) of the maximum (greatest) epoch numbers
of the local snapshots of all the processors.

I Definition 4.2 (Greatest Common Epoch Number). The greatest common epoch number of
a configuration c = È �, �, N, M, D Í is:

gce(c) = min
)

max(dom(a))
-- �p = È a, ‡V Í

*

The persistent output messages of the system consist of all messages produced up to and
including the greatest common epoch. These messages can be identified by comparing their
epoch number e to the greatest common epoch number e Æ gce(c). The recovery purges any
messages which are not part of this set, bar the initial input messages M0, thereby making
these output messages (identified by out) persistent.
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the border events from all its incoming streams. The rule is a local step which, in addition
to consuming border events from all incoming streams and producing a border event on its
outgoing stream, stores the current state v for epoch e to the snapshot storage a (by setting
the new snapshot archive to a[e ‘æ v]), as well as incrementing the current epoch number.

Epochs are a key concept of Asynchronous Barrier Snapshotting. Each epoch is a sequence
of data-bearing events, ending with an epoch border, and are used to define the boundaries
of state snapshots. After regular processing for which some streams are blocked by border
events (Figure 8a), the rule aligns the streams by the borders (Figure 8b), takes a copy
of the current state of the processor storing it to the snapshot archive (Figure 8c), and
propagates the epoch border message downstream and increments the epoch number, ready
to process events from the next epoch (Figure 8d). The e�ect of this is that epochs of events
are separated by the border events throughout the whole processing graph.

Failure Rule. Failures are introduced nondeterministically by the F-Fail rule:

TKÈ f, S, o Í � È a, ‡V Í æ È a, flfl Í
F-Fail

The failure rule sets the task’s state to failed Èa, flÍ, thus losing the task’s volatile state.
Once a task is failed, it is no longer able to apply the steps I-Event and I-Border, and
will remain idle until the F-Recover rule has been applied.

Failure Recovery Rule. The last rule, F-Recover, is a global rule which recovers the state
of all failed tasks:

È a, flfl Í œ �
È �, �, N, M, M0 Í ∆ lcslcs(È �, �, N, M, M0 Í)

F-Recover

The rule may be triggered nondeterministically if there exists a task in a failed state, and
will reset the state of the system to the latest common snapshot. The full details of how
the latest common snapshot (lcs) is computed is discussed further below, as it depends on
additional definitions.

The latest common snapshot is constructed by: (1) calculating the greatest common
epoch for which a snapshot has been taken by all processors in the system; (2) restoring
the state of all processors to their local snapshots at the greatest common epoch; and (3)
restoring sequence numbers and messages to undo any messages that were produced or
consumed for epochs greater than the greatest common epoch. The greatest common epoch
is calculated by finding the minimum (common) of the maximum (greatest) epoch numbers
of the local snapshots of all the processors.

I Definition 4.2 (Greatest Common Epoch Number). The greatest common epoch number of
a configuration c = È �, �, N, M, D Í is:

gce(c) = min
)

max(dom(a))
-- �p = È a, ‡V Í

*

The persistent output messages of the system consist of all messages produced up to and
including the greatest common epoch. These messages can be identified by comparing their
epoch number e to the greatest common epoch number e Æ gce(c). The recovery purges any
messages which are not part of this set, bar the initial input messages M0, thereby making
these output messages (identified by out) persistent.
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Figure 10 Execution of the incremental average task (Figure 2). Top: execution with a failure and
subsequent recovery. Bottom: corresponding failure-free execution. Snapshot archives: a0 =

#
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$
,

a1 = a0
#
1 ‘æ 1

$
, a2 = a1

#
2 ‘æ 4

$
.

assumption for snapshotting protocols [13]. With regard to failures, we make common
assumptions to asynchronous distributed systems [9]. Failures are assumed to be crash-
recovery failures, in which a node looses its volatile state from crashing. Further, we assume
the existence of an eventually perfect failure detector, which is used for (eventually) triggering
the recovery. With regard to system components, we assume the following components which
can be found in production dataflow systems. The implicit coordinator instance is assumed
to be failure free; in practice it is implemented using a distributed consensus protocol such
as Paxos [36]. The snapshot storage is assumed to be persistent and durable; a system such
as HDFS [56] would provide this. Further, the input to the dataflow graph is assumed to be
logged such that it can be replayed upon failure. In practice, a durable log system such as
Kafka [31] would be used for this. For our model, we make the following assumptions. The
recovery is assumed to be an atomic, synchronous system-wide step. In practice, it may be
implemented as an asynchronous atomic step, which allows tasks to start processing before
all have been recovered. Further, the task’s processing functions are assumed to be pure,
i.e., free from side e�ects. A function f may be re-executed multiple times due to failures; a
common assumption in related work [8, 29].

5 Failure Transparency

In this section, we define failure transparency such that it can be applied to systems described
in small-step operational semantics with distinct failure-related rules. We first provide a
rationale behind failure transparency, followed by its formalization.

5.1 Rationale
The purpose of failure transparency is to provide an abstraction of a system which hides
the internals of failures and failure recovery. In particular, we would like to be able to show
that the implementation model presented in the previous section is failure transparent. In
concrete terms, this entails showing that executions in the implementation model can be
“explained” by failure-free executions, something which we explore in this section.

Consider the task of computing the incremental average from the previous example
(Section 3, Figure 2). The task consumes regular events EÈiÍ, reset events, and border
events BD. For this example, we consider a partial execution of the task in which it processes
the events: [EÈ1Í, BD, EÈ3Í, fail, recover, Reset, EÈ3Í, EÈ5Í, BD, . . .]. The task’s configurations
consist of the task’s current average value av, and its snapshot archive, a. Figure 10 shows at
the top an execution of the task with a failure and subsequent failure recovery as the fourth
and fifth events. After the recovery step, in its sixth configuration, the task’s state is reset
to its state for the snapshot a1(1), at which point it had the average value 1.
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functions. Instead of reasoning about executions, we can reason about the ob-
servable output of executions at any given moment. Using observability functions
e!ectively hides the internals of the model and allows the user to focus on the
output of the system. That is, the user can reason about failure-free executions
instead of faulty executions.

This informal introduction highlights three essential parts of failure trans-
parency: the execution system, failures within the system, and the observability
of the system. The goal of the rest of this section is to define these terms and to
provide a formal definition of failure transparency.

5.2 Executions
The execution system for the failure transparency analysis is modelled as a transi-
tion system for which the transition relation is provided as a set of inference rules.
In particular, we provide a formal definition for executions as a means to discuss
the execution of systems. With this notion, distributed programs can be formally
modelled in small-step operational semantics, and consequently formally verified.
Although it may seem unintuitive to model distributed systems as transition sys-
tems for which the transition relation is defined over the global state, this is in fact
commonly done in other formal frameworks such as TLA+ [Lamport 2002].

Definition 5.1. (Execution Step) A statement c → c
↑ is called an execution step

from c to c
↑. We denote the derivability of an execution step in the set of rules R by

R ↓ c→ c
↑.

We reason about systems in terms of their executions. An execution is a se-
quence of configurations C , connected by execution steps derivable in a set of rules
R, and starting from some initial configuration C0.

Definition 5.2. (Executions)

A sequence of configurations
!
Ci

"n
i
such that ↔i < n. R ↓ Ci↗1→ Ci.

The set of all possible executions starting from C0 in R is denoted as !R

C0
.

A sequence of configurations
!
Ci

"n
i
such that ↔i < n. R ↓ Ci↗1→ Ci.

Execution in R
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distributed systems as transition systems for which the transition relation is defined over the
global state, this is in fact commonly done in other formal frameworks such as TLA+ [37].

I Definition 5.1 (Execution Step). A statement c ∆ c
Õ is called an execution step from c to

c
Õ. We denote the derivability of an execution step in the set of rules R by R „ c ∆ c

Õ.

We reason about systems in terms of their executions. An execution is a sequence of
configurations C, connected by execution steps derivable in a set of rules R, starting from
some initial configuration C0.

I Definition 5.2 (Executions). A sequence of configurations
#
Ci

$n

i
is called an execution in

a set of rules R, if ’i < n. R „ Ci≠1 ∆ Ci. The set of all possible executions starting from
C0 in R is denoted as ER

C0
.

The set of rules R of an execution specifies its reducibility relation by providing c ∆ c
Õ as

a conclusion of some of its rules. This approach is commonly known as small-step operational
semantics. In our representation, the set of rules is explicit, whereas commonly it is implicit.
This is due to our need to explicitly distinguish between separate execution systems. This
allows us, for example, to separate an execution system into two parts: one with failures R

s.t. the failure-related rules are a subset thereof F ™ R, and one without failures (R \ F ).

5.3 Observational Explainability
The observability function represents the observer’s view of the system. It notably di�ers
from the plain configurations in the following two ways: the observer may not observe all
internal details of configurations, i.e., some parts of the configuration are hidden from the
observer (e.g., hiding commit messages [8]); and the observer may observe some derived
views of the configuration.

I Definition 5.3 (Observability Function). An observability function O of an execution
system is a function which maps configurations to their observable outputs. It is required to
be monotonic with respect to execution steps possible in the set of rules R for some partial
order ıO, that is: ’c, c

Õ
. (R „ c ∆ c

Õ) =∆ O(c) ıO O(cÕ).

We say that an implementation’s execution is observably explained by a specification’s
execution, if the observer cannot distinguish the two executions. This is the case when, for
every configuration in the implementation’s execution, there is a corresponding configuration
in the specification’s execution, such that their observed values are equal after application of
the respective observability functions.

I Definition 5.4 (Observational Explanation). A sequence of configurations C of length n is
explained by a sequence of configurations C

Õ of length n
Õ with respect to observability functions

O and O
Õ, denoted as C

O⌦O
Õ
C

Õ, if:

’m < n. ÷m
Õ
< n

Õ
. O(Cm) = O

Õ(C Õ
mÕ)

An implementation’s system, in turn, is observably explainable by the specification’s
system, if for each execution of the implementation there exists an explaining execution in
the specification. We call this property observational explainability.

I Definition 5.5 (Observational Explainability). The set of rules R is observationally explain-
able by R

Õ with respect to their observability functions O and O
Õ and the translation relation

T , denoted as R
O

T≠ÔÓ≠O
Õ
R

Õ, if:

’ c
Õ œ dom(T ). ’c. c

Õ
Tc =∆ ’C œ ER

c
. ÷ C

Õ œ ER
Õ

cÕ . C
O⌦O

Õ
C

Õ
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distributed systems as transition systems for which the transition relation is defined over the
global state, this is in fact commonly done in other formal frameworks such as TLA+ [37].

I Definition 5.1 (Execution Step). A statement c ∆ c
Õ is called an execution step from c to

c
Õ. We denote the derivability of an execution step in the set of rules R by R „ c ∆ c

Õ.

We reason about systems in terms of their executions. An execution is a sequence of
configurations C, connected by execution steps derivable in a set of rules R, starting from
some initial configuration C0.

I Definition 5.2 (Executions). A sequence of configurations
#
Ci

$n

i
is called an execution in

a set of rules R, if ’i < n. R „ Ci≠1 ∆ Ci. The set of all possible executions starting from
C0 in R is denoted as ER

C0
.

The set of rules R of an execution specifies its reducibility relation by providing c ∆ c
Õ as

a conclusion of some of its rules. This approach is commonly known as small-step operational
semantics. In our representation, the set of rules is explicit, whereas commonly it is implicit.
This is due to our need to explicitly distinguish between separate execution systems. This
allows us, for example, to separate an execution system into two parts: one with failures R

s.t. the failure-related rules are a subset thereof F ™ R, and one without failures (R \ F ).

5.3 Observational Explainability
The observability function represents the observer’s view of the system. It notably di�ers
from the plain configurations in the following two ways: the observer may not observe all
internal details of configurations, i.e., some parts of the configuration are hidden from the
observer (e.g., hiding commit messages [8]); and the observer may observe some derived
views of the configuration.

I Definition 5.3 (Observability Function). An observability function O of an execution
system is a function which maps configurations to their observable outputs. It is required to
be monotonic with respect to execution steps possible in the set of rules R for some partial
order ıO, that is: ’c, c

Õ
. (R „ c ∆ c

Õ) =∆ O(c) ıO O(cÕ).

We say that an implementation’s execution is observably explained by a specification’s
execution, if the observer cannot distinguish the two executions. This is the case when, for
every configuration in the implementation’s execution, there is a corresponding configuration
in the specification’s execution, such that their observed values are equal after application of
the respective observability functions.

I Definition 5.4 (Observational Explanation). A sequence of configurations C of length n is
explained by a sequence of configurations C

Õ of length n
Õ with respect to observability functions

O and O
Õ, denoted as C

O⌦O
Õ
C

Õ, if:

’m < n. ÷m
Õ
< n

Õ
. O(Cm) = O

Õ(C Õ
mÕ)

An implementation’s system, in turn, is observably explainable by the specification’s
system, if for each execution of the implementation there exists an explaining execution in
the specification. We call this property observational explainability.

I Definition 5.5 (Observational Explainability). The set of rules R is observationally explain-
able by R

Õ with respect to their observability functions O and O
Õ and the translation relation

T , denoted as R
O

T≠ÔÓ≠O
Õ
R

Õ, if:

’ c
Õ œ dom(T ). ’c. c

Õ
Tc =∆ ’C œ ER

c
. ÷ C

Õ œ ER
Õ

cÕ . C
O⌦O

Õ
C

Õ
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(b) Non-monotonic mapping

Figure 11 Monotonic and non-monotonic mapping of configurations.

Properties of Observational Explainability. Observability functions are required to be
monotonic, since observations should be regarded as stable. That is, once a value has been
observed, then it should remain observable in the future. The system should not be able to
undo something that has been observed, otherwise the observer would not be able to rely on
the output. The reason for this is twofold. First, an observer may observe the system multiple
times, and newer observations should provide more up-to-date views. Second, the sequence
of observations should correspond to a valid explanation with respect to the higher-level
specification, this is explored next.

In the general case, it is desirable to have a monotonic mapping of configurations between
the abstract-level and implementation-level executions. Figure 11a shows a monotonic
mapping of configurations between an implementation (top) and a specification (bottom).
What makes the mapping monotonic is that each subsequently mapped configuration of the
implementation is mapped to a configuration with a monotonically growing index. Figure 11b,
on the other hand, shows a non-monotonic mapping, as indicated by the red dashed line.
Non-monotonic mappings, however, are not considered valid explanations. For example, if
the specification consists of the sequence a followed by b, then an implementation which
produces b followed by a is not considered a valid implementation thereof. Thus, we should
not use non-monotonic mappings for the explainability of executions. We capture this notion
in the definition of monotonic observational explanation.

I Definition 5.6 (Monotonic Observational Explanation). An observational explanation is
monotonic if it is a monotonic mapping of configurations. That is, [Ci]ni is monotonically
explained by [C Õ

j
]nÕ

j
w.r.t. O and O

Õ if:

÷
#
hk

$n

k
. (’k < n. ’k

Õ Æ k. hkÕ Æ hk) · (’m < n. ÷m
Õ = hm < n

Õ
. O(Cm) = O

Õ(C Õ
mÕ))

The following lemma explicitly shows that our definition of observational explainability is
equivalent to the definition of monotonic observational explainability. That is, our defini-
tion does not have the problem with non-monotonic mappings of configurations since the
observability functions are required to be monotonic. For this reason, we do not distinguish
between the two definitions in the following sections.

I Lemma 5.7. If R is observationally explainable by R
Õ w.r.t. O, O

Õ, T , then it is also
monotonically observationally explainable:

’ c
Õ œ dom(T ). ’c. c

Õ
Tc =∆ ’C œ ER

c
. ÷ C

Õ œ ER
Õ

cÕ .

C is monotonically explained by C
Õ w.r.t. O and O

Õ

Proof. The complete proof is available in the companion technical report [61]. J

To further aid the use of these definitions within proofs, we also show that the definition
of observational explainability is transitive, as well as a compositionality lemma on the



/26

Observational Explainability

Relates two systems R and R’ according to observabilities O and O’ and translator T

Intuitively: for each execution of a translation, its source should observationally explain it

18

A. Veresov, J. Spenger, P. Carbone, and P. Haller 15:19

observability functions. The parametrization of the observable explainability enables reasoning
about models which di�er in their initial states, and for which we want to apply di�erent
observability functions at the di�erent levels. That is, it can be used for reasoning about
sets of rules which di�er in their initial states, and for which we want to apply di�erent
observability functions at the di�erent levels.

I Lemma 5.8 (Transitivity). R
O

T≠ÔÓ≠O
Õ
R

Õ · R
Õ O

Õ T
Õ

≠ÔÓ≠O
ÕÕ

R
ÕÕ =∆ R

O
T ¶T

Õ
≠≠≠ÔÓ≠≠≠O

ÕÕ
R

ÕÕ

Proof. The complete proof is available in the companion technical report [61]. J

I Lemma 5.9 (Composition). ’O
ÕÕ
. R

O
T≠ÔÓ≠O

Õ
R

Õ =∆ R
O

ÕÕ¶O
T≠ÔÓ≠O

ÕÕ¶O
Õ
R

Õ

Proof. The complete proof is available in the companion technical report [61]. J

5.4 Defining Failure Transparency
The general goal of failure transparency is to provide an abstraction of a system which masks
failures from the users. We express this notion using observational explainability between
the implementation and its failure-free part. That is, the implementation should be observa-
tionally explainable by the implementation without failures. By explicitly separating the set
of failure-related rules F , it is easy to define the two systems: namely, the implementation
system with all rules, i.e., R; and another system with all rules except the failure-related
rules, i.e., R \ F . To fully instantiate the observational equivalence, we further use the same
observability function O on both the low and high levels, and as a translation relation we
use the identity relation on the set of initial configurations.

I Definition 5.10 (Failure Transparency). A set of rules R is failure-transparent with respect to
failure rules F ™ R for a monotonic observability function O and a set of initial configurations
K, this is denoted as R �O

K
F , i�:

R
O

{(c, c) | cœK}≠≠≠≠≠≠≠≠≠ÔÓ≠≠≠≠≠≠≠≠≠O (R \ F )

6 Failure Transparency of Stateful Dataflow

In this section, we show that the presented implementation model (Section 4) is failure
transparent (Definition 5.10) for the observability function out (Definition 4.3). In order to
prove this, instead of reasoning about executions directly, we reason about the traces of steps
which are performed to obtain these executions. This simplifies the proof, enabling us to
reorder and remove specific steps in and from a trace; in contrast, doing the same with a
configuration from an execution a�ects all following configurations. In this section, we first
define traces and a causal order relation on traces, and then prove the failure transparency
of the implementation model by manipulating traces. Finally, we complete our analysis of
the model by formulating and proving its liveness, showing that the implementation model
eventually produces outputs for all epochs in its input.

6.1 Traces and Causality
A trace is a sequence of steps, for which each step is a compact representation of the derivation
of a transition from one configuration to another.
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distributed systems as transition systems for which the transition relation is defined over the
global state, this is in fact commonly done in other formal frameworks such as TLA+ [37].

I Definition 5.1 (Execution Step). A statement c ∆ c
Õ is called an execution step from c to

c
Õ. We denote the derivability of an execution step in the set of rules R by R „ c ∆ c

Õ.

We reason about systems in terms of their executions. An execution is a sequence of
configurations C, connected by execution steps derivable in a set of rules R, starting from
some initial configuration C0.

I Definition 5.2 (Executions). A sequence of configurations
#
Ci

$n

i
is called an execution in

a set of rules R, if ’i < n. R „ Ci≠1 ∆ Ci. The set of all possible executions starting from
C0 in R is denoted as ER

C0
.

The set of rules R of an execution specifies its reducibility relation by providing c ∆ c
Õ as

a conclusion of some of its rules. This approach is commonly known as small-step operational
semantics. In our representation, the set of rules is explicit, whereas commonly it is implicit.
This is due to our need to explicitly distinguish between separate execution systems. This
allows us, for example, to separate an execution system into two parts: one with failures R

s.t. the failure-related rules are a subset thereof F ™ R, and one without failures (R \ F ).

5.3 Observational Explainability
The observability function represents the observer’s view of the system. It notably di�ers
from the plain configurations in the following two ways: the observer may not observe all
internal details of configurations, i.e., some parts of the configuration are hidden from the
observer (e.g., hiding commit messages [8]); and the observer may observe some derived
views of the configuration.

I Definition 5.3 (Observability Function). An observability function O of an execution
system is a function which maps configurations to their observable outputs. It is required to
be monotonic with respect to execution steps possible in the set of rules R for some partial
order ıO, that is: ’c, c

Õ
. (R „ c ∆ c

Õ) =∆ O(c) ıO O(cÕ).

We say that an implementation’s execution is observably explained by a specification’s
execution, if the observer cannot distinguish the two executions. This is the case when, for
every configuration in the implementation’s execution, there is a corresponding configuration
in the specification’s execution, such that their observed values are equal after application of
the respective observability functions.

I Definition 5.4 (Observational Explanation). A sequence of configurations C of length n is
explained by a sequence of configurations C

Õ of length n
Õ with respect to observability functions

O and O
Õ, denoted as C

O⌦O
Õ
C

Õ, if:

’m < n. ÷m
Õ
< n

Õ
. O(Cm) = O

Õ(C Õ
mÕ)

An implementation’s system, in turn, is observably explainable by the specification’s
system, if for each execution of the implementation there exists an explaining execution in
the specification. We call this property observational explainability.

I Definition 5.5 (Observational Explainability). The set of rules R is observationally explain-
able by R

Õ with respect to their observability functions O and O
Õ and the translation relation

T , denoted as R
O

T≠ÔÓ≠O
Õ
R

Õ, if:

’ c
Õ œ dom(T ). ’c. c

Õ
Tc =∆ ’C œ ER

c
. ÷ C

Õ œ ER
Õ

cÕ . C
O⌦O

Õ
C

Õ
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observability functions. The parametrization of the observable explainability enables reasoning
about models which di�er in their initial states, and for which we want to apply di�erent
observability functions at the di�erent levels. That is, it can be used for reasoning about
sets of rules which di�er in their initial states, and for which we want to apply di�erent
observability functions at the di�erent levels.

I Lemma 5.8 (Transitivity). R
O

T≠ÔÓ≠O
Õ
R
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5.4 Defining Failure Transparency
The general goal of failure transparency is to provide an abstraction of a system which masks
failures from the users. We express this notion using observational explainability between
the implementation and its failure-free part. That is, the implementation should be observa-
tionally explainable by the implementation without failures. By explicitly separating the set
of failure-related rules F , it is easy to define the two systems: namely, the implementation
system with all rules, i.e., R; and another system with all rules except the failure-related
rules, i.e., R \ F . To fully instantiate the observational equivalence, we further use the same
observability function O on both the low and high levels, and as a translation relation we
use the identity relation on the set of initial configurations.

I Definition 5.10 (Failure Transparency). A set of rules R is failure-transparent with respect to
failure rules F ™ R for a monotonic observability function O and a set of initial configurations
K, this is denoted as R �O

K
F , i�:

R
O

{(c, c) | cœK}≠≠≠≠≠≠≠≠≠ÔÓ≠≠≠≠≠≠≠≠≠O (R \ F )

6 Failure Transparency of Stateful Dataflow

In this section, we show that the presented implementation model (Section 4) is failure
transparent (Definition 5.10) for the observability function out (Definition 4.3). In order to
prove this, instead of reasoning about executions directly, we reason about the traces of steps
which are performed to obtain these executions. This simplifies the proof, enabling us to
reorder and remove specific steps in and from a trace; in contrast, doing the same with a
configuration from an execution a�ects all following configurations. In this section, we first
define traces and a causal order relation on traces, and then prove the failure transparency
of the implementation model by manipulating traces. Finally, we complete our analysis of
the model by formulating and proving its liveness, showing that the implementation model
eventually produces outputs for all epochs in its input.

6.1 Traces and Causality
A trace is a sequence of steps, for which each step is a compact representation of the derivation
of a transition from one configuration to another.
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the other hand, shows a non-monotonic mapping, as seen by the red line which
cross the other lines. Thus, we should not use non-monotonic mappings for the
explainability of executions. We capture this notion in the definition of monotonic
observational explanation.

Definition 5.6. (Monotonic Observational Explanation) An observational expla-
nation is monotonic if it is a monotonic mapping of configurations. That is, [Ci]ni is
monotonically explained by [C →

j
]m

j
w.r.t. O and O

→ if:

↑
!
hk

"n
k
. (↓k < n. ↓k

→ ↔ k. hk→ ↔ hk) ↗
↓n
→ < n. ↑m→ = hn→ < m. O(Cn→) = O

→(C →
m→)

The following lemma explicitly shows that the presented definition of observa-
tional explainability is equivalent to the definition of monotonic observational ex-
plainability. That is, the definition does not have the problem with non-monotonic
mappings of configurations. For this reason, we will not distinguish between the
two definitions in the following sections.

Lemma 5.7. (Monotonicity) If R is observationally explainable by R
→ w.r.t. T and

monotonic O and O
→, then it is also monotonically observationally explainable:

↓ c
→ ↘ dom(T ). ↓c. c

→
Tc =≃ ↓C ↘ !R

c
. ↑C

→ ↘ !R
→

c→ .

C is monotonically explained by C
→ w.r.t. O and O

→

Proof. Section 7.1 § Proof of Lemma 5.7 QED
To further aid the use of these definitions within proofs, we also show that the

definition of observational explainability is transitive, as well as a compositionality
lemma on the observability functions.

Lemma 5.8. (Transitivity) R
O

T⇐ωϵ⇐O
→
R
→ ↗ R

→ O
→ T
→
⇐ωϵ⇐O

→→
R
→→ =≃ R

O
T⇒T →⇐⇐ωϵ⇐⇐O

→→
R
→→

Proof. Section 7.1 § Proof of Lemma 5.8 QED

Lemma 5.9. (Composition of Observability Functions)

↓O
→→. R

O
T⇐ωϵ⇐O

→
R
→ =≃ R

O
→→⇒O T⇐ωϵ⇐O

→→⇒O→
R
→
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10 Background

snapshots of tasks. While it is easy to obtain a snapshot of a single task, the chal-
lenge is to provide a sensible global snapshot of the whole system. ABS ensures
this by preserving causal relationships of the events in the system, in other words,
by being causally consistent.

Causal Consistency. A distributed snapshotting protocol is considered causally
consistent if it captures snapshots that do not violate causality, captured as causal
order on events [Chandy and Lamport 1985]. The causal order is defined by the
happens-before relation; informally, an event a happens before another event b if
either (1) a was processed before b on the same data processor, or (2) a sends a
message received by b, or (3) there is an event which happens after a and before b;
the causal order is captured formally later in the thesis by Definition 6.5. Figure 2.5
illustrates the concept by showing three di!erent snapshots of a dataflow program
with three data processors.

A naïve and causally inconsistent implementation of snapshotting may simply
make a local snapshot of each of the processors at any time after the snapshot
request is made, without any interprocessor coordination. This may result in an
inconsistent snapshot violating causality, as in Figure 2.5a. The source of the viola-
tion is that the snapshot captures that m2,2 is received by p3, however, the snapshot
does not have any information about the source of the message, in other words, it
does not capture the fact that it was sent by p2. From the point of view provided
by the snapshot, the message m2,2 just emerges out of nothing, which is clearly a
violation of causality. In a practical sense, recovery from this specific snapshot will
result in a resending of m2,2, which in the end will result in a duplicate processing
of the message by p3. Supposing the message was a command to withdraw money
from a bank account, the result of the recovery would be a double withdrawal,
which is clearly not acceptable.

In contrast, causally consistent snapshotting protocols do not violate causality,

p
A B

(a) Inconsistent snapshot

p1

p2

p3

m1,1

m2,1

m1,2 m1,3

m2,2

(b) Chandy-Lamport snapshot
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p2

p3

m1,1

m2,1

m1,2 m1,3

m2,2

(c) ABS snapshot

Figure 2.5. Examples of snapshots of a system with three data processors p1→ p2→ p3.
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the other hand, shows a non-monotonic mapping, as seen by the red line which
cross the other lines. Thus, we should not use non-monotonic mappings for the
explainability of executions. We capture this notion in the definition of monotonic
observational explanation.

Definition 5.6. (Monotonic Observational Explanation) An observational expla-
nation is monotonic if it is a monotonic mapping of configurations. That is, [Ci]ni is
monotonically explained by [C →

j
]m

j
w.r.t. O and O

→ if:

↑
!
hk

"n
k
. (↓k < n. ↓k

→ ↔ k. hk→ ↔ hk) ↗
↓n
→ < n. ↑m→ = hn→ < m. O(Cn→) = O

→(C →
m→)

The following lemma explicitly shows that the presented definition of observa-
tional explainability is equivalent to the definition of monotonic observational ex-
plainability. That is, the definition does not have the problem with non-monotonic
mappings of configurations. For this reason, we will not distinguish between the
two definitions in the following sections.

Lemma 5.7. (Monotonicity) If R is observationally explainable by R
→ w.r.t. T and

monotonic O and O
→, then it is also monotonically observationally explainable:

↓ c
→ ↘ dom(T ). ↓c. c

→
Tc =≃ ↓C ↘ !R

c
. ↑C

→ ↘ !R
→

c→ .

C is monotonically explained by C
→ w.r.t. O and O

→

Proof. Section 7.1 § Proof of Lemma 5.7 QED
To further aid the use of these definitions within proofs, we also show that the

definition of observational explainability is transitive, as well as a compositionality
lemma on the observability functions.

Lemma 5.8. (Transitivity) " R
O

T⇐ωϵ⇐O
→
R
→ ↗ R

→ O
→ T
→
⇐ωϵ⇐O

→→
R
→→ =≃ R̂

O
→→⇒Ô T̂⇒T⇐⇐ωϵ⇐⇐O

→
R
→

Proof. Section 7.1 § Proof of Lemma 5.8 QED

Lemma 5.9. (Composition of Observability Functions)

↓O
→→. O = O

→→ ⇒ Õ R̂
Ô

T̂⇐ωϵ⇐ Õ
R =≃ R

O
→→⇒O T⇐ωϵ⇐O

→→⇒O→
R
→
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snapshots of tasks. While it is easy to obtain a snapshot of a single task, the chal-
lenge is to provide a sensible global snapshot of the whole system. ABS ensures
this by preserving causal relationships of the events in the system, in other words,
by being causally consistent.

Causal Consistency. A distributed snapshotting protocol is considered causally
consistent if it captures snapshots that do not violate causality, captured as causal
order on events [Chandy and Lamport 1985]. The causal order is defined by the
happens-before relation; informally, an event a happens before another event b if
either (1) a was processed before b on the same data processor, or (2) a sends a
message received by b, or (3) there is an event which happens after a and before b;
the causal order is captured formally later in the thesis by Definition 6.5. Figure 2.5
illustrates the concept by showing three di!erent snapshots of a dataflow program
with three data processors.

A naïve and causally inconsistent implementation of snapshotting may simply
make a local snapshot of each of the processors at any time after the snapshot
request is made, without any interprocessor coordination. This may result in an
inconsistent snapshot violating causality, as in Figure 2.5a. The source of the viola-
tion is that the snapshot captures that m2,2 is received by p3, however, the snapshot
does not have any information about the source of the message, in other words, it
does not capture the fact that it was sent by p2. From the point of view provided
by the snapshot, the message m2,2 just emerges out of nothing, which is clearly a
violation of causality. In a practical sense, recovery from this specific snapshot will
result in a resending of m2,2, which in the end will result in a duplicate processing
of the message by p3. Supposing the message was a command to withdraw money
from a bank account, the result of the recovery would be a double withdrawal,
which is clearly not acceptable.

In contrast, causally consistent snapshotting protocols do not violate causality,
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the other hand, shows a non-monotonic mapping, as seen by the red line which
cross the other lines. Thus, we should not use non-monotonic mappings for the
explainability of executions. We capture this notion in the definition of monotonic
observational explanation.

Definition 5.6. (Monotonic Observational Explanation) An observational expla-
nation is monotonic if it is a monotonic mapping of configurations. That is, [Ci]ni is
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The following lemma explicitly shows that the presented definition of observa-
tional explainability is equivalent to the definition of monotonic observational ex-
plainability. That is, the definition does not have the problem with non-monotonic
mappings of configurations. For this reason, we will not distinguish between the
two definitions in the following sections.
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Proof. Section 7.1 § Proof of Lemma 5.7 QED
To further aid the use of these definitions within proofs, we also show that the

definition of observational explainability is transitive, as well as a compositionality
lemma on the observability functions.
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the newly produced messages. The consumed messages are not removed from the
message sequence, as they may be consumed by other processors. Moreover, since
each stream has at most one producer, we do not need to synchronize sequence
numbers across processors.

Taking a streaming step results in the configuration transition to the new, up-
dated configuration →ω, ϵ

!
p ↑↓ ϵ↔

p

"
, N

!
p ↑↓ N

↔
p

"
, M
↔, D ↗. To note is that the pro-

cessors’ definitions ω and the auxiliary data D remain unchanged; M
↔ can be only

extended or remain unchanged; and ϵ and N are updated only for the processor
over which the step takes place. In summary, the result of the streaming step is
an update of the local state of the processor according to the nondeterministically
chosen local step, and an update of the sequence numbers and messages according
to the actions X . To simplify the analysis of streaming steps, auxiliary information
about the processor ID, its sequence numbers, and the actions of the step is placed
on the arrow of the execution step. This information can be omitted when it is not
needed by applying abstraction steps S-A!"X and S-A!"P.

S-S#$%
ωp ! ϵp

X↘↓ ϵ↔
p

X (Np, M) = (N ↔
p
, M
↔)

→ω, ϵ, N , M , D ↗
Np ,X
==≃

p

→ω, ϵ
!
p ↑↓ ϵ↔

p

"
, N

!
p ↑↓ N

↔
p

"
, M
↔, D ↗

S-A!"X
c

Np ,X
==≃

p

c
↔

c =≃
p

c
↔

S-A!"P
c ==≃

p

c
↔

c =≃ c
↔

The streaming rule can be applied if there exists a derivation of a local step
over a processor ωp of the form ωp ! ϵp

X↘↓ ϵ↔
p
. They are called local steps since

they have access only to the local data of a processor, i.e., its definition, state and
directly accessible input messages. These rules describe a local step of a processor,
in which the processor may produce and consume messages via actions X , and
update its local state to ϵ↔

p
. The to-be-performed actions X are checked for their

applicability, and, if it is the case, they are used to modify the sequence numbers
Np of the processor and the messages M in the system. The check and update are
captured by the action application definition. Action application has form X (Np, M)
and is either undefined, in which case the actions X are not applicable to the Np

and M , or results in the new sequence numbers N
↔
p
and messages M

↔ used for the
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snapshots of tasks. While it is easy to obtain a snapshot of a single task, the chal-
lenge is to provide a sensible global snapshot of the whole system. ABS ensures
this by preserving causal relationships of the events in the system, in other words,
by being causally consistent.

Causal Consistency. A distributed snapshotting protocol is considered causally
consistent if it captures snapshots that do not violate causality, captured as causal
order on events [Chandy and Lamport 1985]. The causal order is defined by the
happens-before relation; informally, an event a happens before another event b if
either (1) a was processed before b on the same data processor, or (2) a sends a
message received by b, or (3) there is an event which happens after a and before b;
the causal order is captured formally later in the thesis by Definition 6.5. Figure 2.5
illustrates the concept by showing three di!erent snapshots of a dataflow program
with three data processors.

A naïve and causally inconsistent implementation of snapshotting may simply
make a local snapshot of each of the processors at any time after the snapshot
request is made, without any interprocessor coordination. This may result in an
inconsistent snapshot violating causality, as in Figure 2.5a. The source of the viola-
tion is that the snapshot captures that m2,2 is received by p3, however, the snapshot
does not have any information about the source of the message, in other words, it
does not capture the fact that it was sent by p2. From the point of view provided
by the snapshot, the message m2,2 just emerges out of nothing, which is clearly a
violation of causality. In a practical sense, recovery from this specific snapshot will
result in a resending of m2,2, which in the end will result in a duplicate processing
of the message by p3. Supposing the message was a command to withdraw money
from a bank account, the result of the recovery would be a double withdrawal,
which is clearly not acceptable.

In contrast, causally consistent snapshotting protocols do not violate causality,
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Figure 12 The step-wise construction of a failure-free execution trace from an execution with
failures.

dataflow implementation model; it corresponds to the implementation model presented in
Section 4. The set of failure-related rules F within the implementation model consists of the
two rules F-Fail and F-Recover. This way, the rules without failures are defined as the
set (I \ F).

I Definition 6.6 (Implementation Model Rules). I = {S-Step, S-AbsX, S-AbsP, I-Event,

I-Border} fi F

I Definition 6.7 (Failure-Related Rules). F = {F-Fail, F-Recover}

The sets of initial configurations which are considered are any acyclic graph structures
which are properly initialized.

I Definition 6.8 (Valid Initial Configurations). K = È �, �, N, M, M0 Í such that: the graph
defined by � is acyclic, and the tasks’ functions f do not output infinite sequences; � are
the initial well-formed states; N are sequence numbers initialized to 0 for the streams; M

consists of the well-formed inputs to the streams; M0 = M .

I Theorem 6.9 (Failure Transparency of the Implementation Model). I �out
K

F , i.e., the set of
rules I = {S-Step, S-AbsX, S-AbsP, I-Event, I-Border} fi F is failure transparent with
respect to the failure rules F = {F-Fail, F-Recover} for the observability function out and
the set of initial configurations K.

Before proceeding with the proof itself, we provide a sketch of it. The proof idea
is to construct a failure-free observational explanation of an arbitrary execution in the
implementation model.

ECOOP 2024

Given: Original execution

Construct: Failure-free observational explanation

1. Separated generation 2. Reordered generation
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Summary
- Failure Transparency is defined so that it is widely applicable

- The definition enables easier proofs via history manipulation

- The first operational semantics of Asynchronous Barrier Snapshotting is provided

- Asynchronous Barrier Snapshotting provides Failure Transparency
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Future Work
- Mechanize the proofs

- Provide lower- and higher-level models of Stateful Dataflow Systems

- Explore end-to-end Failure Transparency of heterogeneous systems


